The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points

نویسنده

  • Jean-Yves Le Boudec
چکیده

Assume that a stochastic process can be approximated, when some scale parameter gets large, by a fluid limit (also called “mean field limit”, or “hydrodynamic limit”). A common practice, often called the “fixed point approximation” consists in approximating the stationary behaviour of the stochastic process by the stationary points of the fluid limit. It is known that this may be incorrect in general, as the stationary behaviour of the fluid limit may not be described by its stationary points. We show however that, if the stochastic process is reversible, the fixed point approximation is indeed valid. More precisely, we assume that the stochastic process converges to the fluid limit in distribution (hence in probability) at every fixed point in time. This assumption is very weak and holds for a large family of processes, among which many mean field and other interaction models. We show that the reversibility of the stochastic process implies that any limit point of its stationary distribution is concentrated on stationary points of the fluid limit. If the fluid limit has a unique stationary point, it is an approximation of the stationary distribution of the stochastic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shortcut Node Classification for Membrane Residue Curve Maps

comNode classification within Membrane Residue Curves (M-RCMs) currently hinges on Lyapunov’s Theorem and therefore the computation of mathematically complex eigenvalues. This paper presents an alternative criterion for the classification of nodes within M-RCMs based on the total membrane flux at node compositions. This paper demonstrates that for a system exhibiting simple permeation behaviour...

متن کامل

Longitudinal Wave Propagation Analysis of Stationary and Axially Moving Carbon Nanotubes Conveying Fluid

In this study, the effect of small-scale of both nanostructure and nano-fluid flowing through it on the natural frequency and longitudinal wave propagation are investigated. Here, the stationary and axially moving single-walled carbon nanotube conveying fluid are studied. The boundary conditions for the stationary nanotube is considering clamped-clamped and pined-pined and for the axially movin...

متن کامل

Soret Dufour Driven Thermosolutal Instability of Darcy-maxwell Fluid

Linear stability of double diffusive convection of Darcy-Maxwell fluid with Soret and Dufour effects is investigated. The effects of the Soret and Dufour numbers, Lewis number, relaxation time and solutal Darcy Rayleigh number on the stationary and oscillatory convection are presented graphically. The Dufour number enhances the stability of Darcy-Maxwell fluid for stationary convection while it...

متن کامل

The Stationary - NonStationary Process and The Variable Roots Difference Equations

Stochastic, processes can be stationary or nonstationary. They depend on the magnitude of shocks. In other words, in an auto regressive model of order one, the estimated coefficient is not constant. Another finding of this paper is the relation between estimated coefficients and residuals. We also develop a catastrophe and chaos theory for change of roots from stationary to a nonstationary one ...

متن کامل

Second Moment of Queue Size with Stationary Arrival Processes and Arbitrary Queue Discipline

In this paper we consider a queuing system in which the service times of customers are independent and identically distributed random variables, the arrival process is stationary and has the property of orderliness, and the queue discipline is arbitrary. For this queuing system we obtain the steady state second moment of the queue size in terms of the stationary waiting time distribution of a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NHM

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013